

Feb 19-8:47 AM

Dec 12-7:33 AM

$$
\begin{aligned}
& \text { Comparing at least } 3 \text { population means } \\
& H_{0}: \mu_{1}=\mu_{2}=\mu_{3}=\cdots=\mu_{K} \\
& H_{1}: \text { At least one mean is different. RTT } \\
& K \rightarrow \# \text { of groups } \Rightarrow \begin{array}{l}
N d f=K-1 \\
\\
n \rightarrow \text { Total Sample size }=n-K
\end{array} \\
& \text { method } \rightarrow \text { ANOVA (Analysis of Variance) } \\
& \text { Store each group in a list. } \\
& \text { CTS F } \rightarrow \text { StaT TESTS PD ANOVA(L1,L2,L3, } \\
& \text { P -value } P \\
& \text { Use testing chart to proceed. }
\end{aligned}
$$

Draw final conclusion for the claim.

I randomly selected exums from 3 different colleges.
Here are the Scores:

H_{1} : At least one mean is different. RTT
Elac \rightarrow Sl STAT TESTS ANOVA(LI, LL, L3
MH.SAC \rightarrow LI
Enters
chaffey \rightarrow L3
CTS $F=.138$
Prawe $P=.872$
P-value $) \alpha$
.872 Ho valid \rightarrow Valid claiman \rightarrow FTR
the clation

Dec 12-7:47 AM

I randomly selected students from different Schools. Here are their ages: $\begin{aligned} & k=4 \\ & n=5+5+5+5=20 \end{aligned} \Rightarrow \begin{aligned} & N d f=k-1=3 \\ & D d f=n-k=16 \end{aligned}$ Use $\alpha=.1$ to test the claim that all means are the Same. $H_{0}: \mu_{1}=\mu_{2}=\mu_{3}=\mu_{4}$ claim H_{1} : At least one mean is different. RTT chaffey $\rightarrow L 1$ ELAC $\rightarrow L 2 \Rightarrow \operatorname{ANOVA}(L 1, L 2, L 3, L 4)$ $M+$ SAC $\rightarrow L 3 \quad$ CTS $F=7.549$ UCLA \rightarrow L4 $\quad P$-value $P=.002$ P-value $\leq \propto$.002 .1 Ho invalid \rightarrow Invalid claim H1 valid Reject the claim	

\qquad
\qquad

Dec 12-8:10 AM

